Water-Based Settlement and the Loss of Community Water Resilience
Main Article Content
Issue | Vol. 5 No. 2 (2022) |
Published | Jul 30, 2022 |
Section | Articles |
Article downloads | 551 |
Submitted : Feb 18, 2022 | Accepted : Jun 28, 2022
Abstract
After the first dam was built in the Chao Phraya River during the 1950s, several water-controlled structures and megaprojects were built throughout the basin. For the first 30 years, water levels were stable, and the dams largely provided flood prevention. However, in recent years, global warming and climate change have been driving the frequency and intensity of extreme events. Local people have gradually lost their resilience against living with water during the years of a stable flood and flow system. This caused the interiority of the amphibious culture to drown into an oblivion state in the water-based settlement. The investigation was conducted in two villages with identical environmental conditions and similar cultural livelihoods in the floodplain of Ayutthaya Province against seasonal water intrusion. The physical characteristics of housing and cultural landscape of the waterfront villages were analysed via floor plans and cross-sectional study to explain the physical changes through time. The primary investigation revealed that the loss of the underneath space is an important indicator of housing changes resulting from the water conditions becoming more stable. Individuals have started to forget how to live with water. At the same time, the characteristics of the stilt house with an underneath space indicated that the communities continue to practice resilience to co-exist with the flood phenomenon.
Article Details
References
Atmodiwirjo, P., & Yatmo, Y. A. (2022). Interiority from the body, mind, and culture. Interiority, 5(1), 1–4. https://doi.org/10.7454/in.v5i1.209
Bureau of Water Management and Hydrology. (2011). The annual highest water level (HWL) at Phra Nakhon Si Ayutthaya Province between 1831 to present comparing the average before and after the Bhumibol Dam and Sirikit Dam were constructed [Data set]. http://water.rid.go.th/hydrology/downloads2554/
Central Region Irrigation Hydrology Center. (2020). Annual highest water level (HWL) in the central region [Data Set]. http://hydro-5.rid.go.th/Data/4/4-05.html
Falvey, J. L. (2001). Thai agriculture from Ayutthaya to the early 20th century. Asian Agri-History, 5(4), 283–296.
Ingram, J. C. (1971). Economic change in Thailand, 1850-1970. Oxford University Press.
Intorpetch, B., Wisawapipat, W., Arunlertaree, C., & Teartisup, P. (2014). Soil physicochemical status and nutrient management for paddy soils in the lower central plain of Thailand after the flood disaster in 2011. Environment and Natural Resources Journal, 12(1), 57–67. https://ph02.tci-thaijo.org/index.php/ennrj/article/view/71178
Kaida, Y. (1974). Pioneer settlements and water control development on the west bank of the lower Chao Phraya Delta: Water conditions in the deltaic lowland rice fields (II). Japanese Journal of Southeast Asian Studies, 11(4), 512–524. https://doi.org/10.20495/tak.11.4_512
Kasetsart University, & ORSTOM. (1996). Agricultural and irrigation patterns in the Central Plain of Thailand: Preliminary analysis and prospects for agricultural development. DORAS Project. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-06/010008037.pdf
Khwansuwan, P. (2017). The continued existence of amphibious settlements in the Chao Phraya Flood Plain (Publication No. 600793) [Doctoral dissertation, Kasetsart University]. Kasetsart Library Catalog.
Killebrew, K., Wolff, H., Anderson, C. L., & Gugerty, M. K. (2010, March 17). Environmental impacts of agricultural technologies. Evans School Policy Analysis & Research Group (EPAR). https://epar.evans.uw.edu/research/environmental-impact-agricultural-technologies
Kwansuwan, P. (2015). Traditional communities: Definition, value, regeneration mechanism to everyday life practice. Journal of the Faculty of Architecture King Mongkut's Institute of Technology Ladkrabang, 20(1), 1–17. https://so04.tci-thaijo.org/index.php/archkmitl/article/view/38521
Nilaponkun, K., & Thaitakoo, D. (2019). Flood pulse dynamics and ecosystem services of Chaophraya Delta: A case study of Ladchado community Amphoe Pukhai Ayutthaya Province. Sarasatr, 2(2), 256–270. https://so05.tci-thaijo.org/index.php/sarasatr/article/view/189691
Null, J. (2022). El Niño and La Niña years and intensities: Based on Oceanic Niño Index (ONI) [Data set]. Golden Gate Weather Services. https://ggweather.com/enso/oni.htm
OCHA Services. (2006, October 29). Flood situation in Thailand. reliefweb. https://reliefweb.int/report/thailand/flood-situation-thailand-29-october-2006
Onrubia, A. F.-L. (2015). Indigenous knowledge of a changing environment: An ethnoecological perspective from Bolivian Amazonia (Publication No. 9788449058523) [Doctoral dissertation, Universitat Autònoma de Barcelona]. Tesis Doctorals en Xarxa (TDX).
Pholphirul, P., & Rukumnuaykit, P. (2010). Economic contribution of migrant workers to Thailand. International Migration, 48(5), 174–202. https://doi.org/10.1111/j.1468-2435.2009.00553.x
Pinijvarasin, W. (2003). Experiences of well-being in Thai vernacular houses [Doctoral dissertation, The University of Melbourne]. Minerva Access.
Puckridge, D. W., Kupkanchanu, T., Palaklang, W., & Kupkanchanakul, K. (2000, December 12–15). Production of rice and associated crops in deeply flooded areas of the Chao Phraya Delta [Conference session]. International Conference on the Chao Phraya Delta: Historical Development 1 Dynamics and Challenges of Thailand's Rice Bowl, Kasetsart University, Bangkok.
Rodina, L. (2018). Defining "water resilience": Debates, concepts, approaches, and gaps. WIREs Water, 6(2), 1–18. https://doi.org/10.1002/wat2.1334
Rodina, L., & Chan, K. M. A. (2019). Expert views on strategies to increase water resilience: Evidence from a global survey. Ecology and Society, 24(4), 28. https://doi.org/10.5751/ES-11302-240428
Ruensuk, N., Rossopa, B., Channu, C., Paothong, K., Prayoonsuk, N., Rakchum, P. & Malumpong, C. (2021). Improving water use efficiency and productivity in rice crops by applying alternate wetting and drying with pregerminated broadcasting in farmers' fields. Agriculture and Natural Resources, 55(1), 119–130. https://doi.org/10.34044/j.anres.2021.55.1.16
Sapphaisal, C. (2008). The management and development of large-scale agricultural area in mitigation of medium to large floods in the Chao Phraya River basin according to the Royal Initiative Pilot project: Monkey Cheek in Bangban area (1). Retrieved from http://elibrary.trf.or.th/project_content.asp?PJID=RDG5130008
Small, L. E. (1973). Historical development of the Greater Chao Phya water control project: An economic perspective. Journal of the Siam Society, 61(1), 1–24. https://thesiamsociety.org/wp-content/uploads/1973/03/JSS_061_1b_Small_ricalDevelopmentOfGreaterChaoPhyaWaterControlProject.pdf
Takaya, Y. (1987). Agricultural development of a tropical delta: A study of the Chao Phraya Delta (P. Hawkes. Trans.). University of Hawaii Press. (Original work published 1985)
Tanaka, W., Wattanasiriserekul, R., Tomiyama, Y., Yamasita, T., Phinrub, W., Chamnivikaipong, T., Suvarnaraksha, A., Shimatani, Y. (2015). Influence of floodplain area on fish species richness in waterbodies of the Chao Phraya River basin, Thailand. Open Journal of Ecology, 5(9), 434–451. https://dx.doi.org/10.4236/oje.2015.59036
Team Consulting Engineering and Management. (2012). Final environmental impact assessment: Tha: Ayudhaya natural gas power project. https://www.adb.org/sites/default/files/project-document/73982/46907-014-tha-eia.pdf
Thai Flood Monitoring System. (2021). Flood information [Data set]. https://flood.gistda.or.th/
Udomsri, S., Huntrakool, K., & Watana, S. (2004). Characterization of established soil series in the central plain region of Thailand. Office of Surveying and Mapping Technology, Department of Land Development, Kasetsart University, Kamphaeng Saen Campus Nakhon Pathom, Thailand. http://oss101.ldd.go.th/web_standard/_doc_std/series_desc/D_520_Established%20soil%20series%20in%20the%20Central%20Plain.pdf
Ueangsawat, K., Nilsamranchit, S., & Jintrawet, A. (2015). Fate of ENSO phase on upper northern Thailand, a case study in Chiang Mai. Agriculture and Agricultural Science Procedia, 5, 2–8. https://doi.org/10.1016/j.aaspro.2015.08.001
Vongvisessomjai, S. (2006). Chao Phraya Delta: Paddy field irrigation area in tidal deposit. 19th International Congress and 56th International Executive Council of ICID, THAICID-Multifunctional roles of irrigation water in Thailand. Retrieved May 14, 2022, from https://www.rid.go.th/thaicid/_5_article/2549/10_1ChaoPhraYaDelta.pdf
Yodsurang, P., Hiromi, M., & Yasufumi, U. (2016). A traditional community in the Chao Phraya River basin: Classification and characteristics of a waterfront community complex. Asian Culture and History, 8(1), 57–68. https://doi.org/10.5539/ach.v8n1p57
Yodsurang, P., & Yasufumi, U. (2016). A traditional community in the Chao Phraya River basin II: Influence of water circulation on the traditional living culture according to the settlement pattern. Asian Culture and History, 8(1), 112–125. https://doi.org/10.5539/ach.v8n1p112
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) retain the copyright of articles published in this journal, with first publication rights granted to Interiority.